Skip to main content
Available on all Portkey plans.
The Chat Completions API is the most widely adopted format for LLM interaction. Portkey makes it work with every provider — send the same POST /v1/chat/completions request to OpenAI, Anthropic, Gemini, Bedrock, or any of the 3000+ supported models.

Quick Start

from portkey_ai import Portkey

portkey = Portkey(api_key="PORTKEY_API_KEY")

response = portkey.chat.completions.create(
    model="@openai-provider/gpt-4o",
    messages=[{"role": "user", "content": "Explain quantum computing in simple terms"}]
)

print(response.choices[0].message.content)
Switch model to use any provider — @anthropic-provider/claude-sonnet-4-5-20250514, @google-provider/gemini-2.0-flash, or any of the 3000+ supported models.

Using the OpenAI SDK

The Portkey SDK is a superset of the OpenAI SDK, so all Chat Completions methods work identically. The OpenAI SDK also works directly with Portkey’s base URL:
from openai import OpenAI

client = OpenAI(
    api_key="PORTKEY_API_KEY",
    base_url="https://api.portkey.ai/v1"
)

response = client.chat.completions.create(
    model="@openai-provider/gpt-4o",
    messages=[{"role": "user", "content": "Explain quantum computing in simple terms"}]
)

print(response.choices[0].message.content)

System Messages

Set a system prompt using the system role in the messages array:
response = portkey.chat.completions.create(
    model="@openai-provider/gpt-4o",
    messages=[
        {"role": "system", "content": "You are a pirate. Always respond in pirate speak."},
        {"role": "user", "content": "Say hello."}
    ]
)

Streaming

Stream responses token-by-token with stream: true.
from portkey_ai import Portkey

portkey = Portkey(api_key="PORTKEY_API_KEY")

stream = portkey.chat.completions.create(
    model="@openai-provider/gpt-4o",
    messages=[{"role": "user", "content": "Write a haiku about AI"}],
    stream=True
)

for chunk in stream:
    if chunk.choices[0].delta.content:
        print(chunk.choices[0].delta.content, end="", flush=True)

Function Calling

Define tools with the tools parameter. Works across all providers that support function calling.
from portkey_ai import Portkey

portkey = Portkey(api_key="PORTKEY_API_KEY")

response = portkey.chat.completions.create(
    model="@openai-provider/gpt-4o",
    messages=[{"role": "user", "content": "What's the weather in San Francisco?"}],
    tools=[{
        "type": "function",
        "function": {
            "name": "get_weather",
            "description": "Get current weather for a location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {"type": "string", "description": "City name"}
                },
                "required": ["location"]
            }
        }
    }]
)

tool_call = response.choices[0].message.tool_calls[0]
print(f"Function: {tool_call.function.name}")
print(f"Arguments: {tool_call.function.arguments}")

Function Call Results

Pass tool results back to continue the conversation:
response = portkey.chat.completions.create(
    model="@openai-provider/gpt-4o",
    messages=[
        {"role": "user", "content": "What's the weather in Paris?"},
        {"role": "assistant", "tool_calls": [{"id": "call_123", "type": "function", "function": {"name": "get_weather", "arguments": '{"location": "Paris"}'}}]},
        {"role": "tool", "tool_call_id": "call_123", "content": '{"temp": "22°C", "condition": "sunny"}'}
    ]
)

print(response.choices[0].message.content)

Vision

Send images in the content array using the image_url type. Works with all vision-capable models.
response = portkey.chat.completions.create(
    model="@openai-provider/gpt-4o",
    messages=[{
        "role": "user",
        "content": [
            {"type": "text", "text": "Describe this image"},
            {"type": "image_url", "image_url": {"url": "https://example.com/image.jpg"}}
        ]
    }]
)

print(response.choices[0].message.content)
Base64-encoded images are also supported — pass a data URL as the url value:
Python
{"type": "image_url", "image_url": {"url": "..."}}

Structured Output

JSON Schema

Force the model to return structured JSON matching a specific schema:
response = portkey.chat.completions.create(
    model="@openai-provider/gpt-4o",
    messages=[{"role": "user", "content": "Extract: John is 30 years old"}],
    response_format={
        "type": "json_schema",
        "json_schema": {
            "name": "person",
            "schema": {
                "type": "object",
                "properties": {
                    "name": {"type": "string"},
                    "age": {"type": "integer"}
                },
                "required": ["name", "age"],
                "additionalProperties": False
            }
        }
    }
)

print(response.choices[0].message.content)  # {"name": "John", "age": 30}

JSON Mode

For free-form JSON output without a strict schema:
response = portkey.chat.completions.create(
    model="@openai-provider/gpt-4o",
    messages=[{"role": "user", "content": "List 3 programming languages and their main use cases as JSON"}],
    response_format={"type": "json_object"}
)

Multi-turn Conversations

Pass the full conversation history in the messages array:
response = portkey.chat.completions.create(
    model="@openai-provider/gpt-4o",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "My name is Alice."},
        {"role": "assistant", "content": "Hello Alice! How can I help you?"},
        {"role": "user", "content": "What is my name?"}
    ]
)

print(response.choices[0].message.content)  # "Your name is Alice."

Using with Portkey Features

Chat Completions works with all Portkey gateway features:
  • Configs — Route, load balance, and set fallbacks
  • Caching — Cache responses for faster, cheaper calls
  • Guardrails — Add input/output guardrails
  • Observability — Full logging and tracing
portkey = Portkey(
    api_key="PORTKEY_API_KEY",
    config="pp-config-xxx"  # Config with fallbacks, load balancing, etc.
)

response = portkey.chat.completions.create(
    model="gpt-4o",
    messages=[{"role": "user", "content": "Hello!"}]
)

API Reference

Last modified on February 12, 2026